login
T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 0,0,1,1,1 for x=0,1,2,3,4
8

%I #5 Mar 31 2012 12:36:29

%S 1,2,2,1,4,1,1,8,8,1,3,16,3,16,3,3,40,53,53,40,3,2,80,110,275,110,80,

%T 2,4,192,227,780,780,227,192,4,6,400,1035,5713,5062,5713,1035,400,6,5,

%U 936,2004,16773,31276,31276,16773,2004,936,5,6,1984,7529,98870,213912,405065

%N T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 0,0,1,1,1 for x=0,1,2,3,4

%C Every 0 is next to 0 0's, every 1 is next to 1 0's, every 2 is next to 2 1's, every 3 is next to 3 1's, every 4 is next to 4 1's

%C Table starts

%C .1....2.....1.......1........3..........3............2.............4

%C .2....4.....8......16.......40.........80..........192...........400

%C .1....8.....3......53......110........227.........1035..........2004

%C .1...16....53.....275......780.......5713........16773.........98870

%C .3...40...110.....780.....5062......31276.......213912.......1244680

%C .3...80...227....5713....31276.....405065......3264225......29975706

%C .2..192..1035...16773...213912....3264225.....48703999.....692974749

%C .4..400..2004...98870..1244680...29975706....692974749...11304892092

%C .6..936..7529..393913..8149652..324191969...9613268927..308547360234

%C .5.1984.20633.1869033.54813300.2687575073.144634486646.5580867056186

%H R. H. Hardin, <a href="/A197250/b197250.txt">Table of n, a(n) for n = 1..199</a>

%e Some solutions containing all values 0 to 4 for n=6 k=4

%e ..0..1..1..2....1..2..2..1....1..0..1..1....0..1..1..0....1..0..1..1

%e ..1..1..0..1....0..1..1..0....1..1..2..0....2..1..4..1....2..1..3..0

%e ..1..3..2..1....2..1..4..1....0..1..3..1....1..0..1..2....0..1..1..2

%e ..0..1..1..0....1..0..1..1....1..4..1..3....1..3..1..0....1..1..0..1

%e ..1..1..4..1....2..1..1..0....1..1..0..1....0..1..1..2....1..4..1..2

%e ..1..0..1..2....0..1..3..1....0..1..1..2....1..1..0..1....0..1..1..0

%Y Column 1 is A017817(n+5)

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_ Oct 12 2011