login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX7 0..4 arrays with each element equal to the number its horizontal and vertical neighbors equal to 2
1

%I #5 Mar 31 2012 12:36:28

%S 1,10,38,93,200,547,1685,4932,13343,35901,99603,280909,785677,2175329,

%T 6019355,16730920,46595762,129615164,360051905,1000167816,2780017546,

%U 7729131408,21485039780,59712094301,165955469526,461272868992

%N Number of nX7 0..4 arrays with each element equal to the number its horizontal and vertical neighbors equal to 2

%C Every 0 is next to 0 2's, every 1 is next to 1 2's, every 2 is next to 2 2's, every 3 is next to 3 2's, every 4 is next to 4 2's

%C Column 7 of A197061

%H R. H. Hardin, <a href="/A197060/b197060.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 2*a(n-1) +a(n-2) -a(n-3) +13*a(n-4) +8*a(n-5) -15*a(n-6) -25*a(n-7) -33*a(n-8) -64*a(n-9) -49*a(n-10) -29*a(n-11) +146*a(n-12) +359*a(n-13) +326*a(n-14) +81*a(n-15) -437*a(n-16) -710*a(n-17) -213*a(n-18) +223*a(n-19) +218*a(n-20) +219*a(n-21) +22*a(n-22) +403*a(n-23) +683*a(n-24) -157*a(n-25) -801*a(n-26) -1331*a(n-27) -1032*a(n-28) +549*a(n-29) -10*a(n-30) -188*a(n-31) +1137*a(n-32) +734*a(n-33) +812*a(n-34) +403*a(n-35) -317*a(n-36) +414*a(n-37) -492*a(n-38) +149*a(n-39) +1238*a(n-40) -372*a(n-41) +243*a(n-42) +481*a(n-43) -657*a(n-44) -1340*a(n-45) -2030*a(n-46) -608*a(n-47) +805*a(n-48) +516*a(n-49) +483*a(n-50) -187*a(n-51) -201*a(n-52) +169*a(n-53) -314*a(n-54) -430*a(n-55) +30*a(n-56) +357*a(n-57) +465*a(n-58) +188*a(n-59) -10*a(n-60) -48*a(n-61) +2*a(n-62) +61*a(n-63) -33*a(n-64) -68*a(n-65) +57*a(n-66) +73*a(n-67) +27*a(n-68) +20*a(n-69) +2*a(n-70) -11*a(n-71) -4*a(n-72) -6*a(n-73) -3*a(n-74)

%e Some solutions for n=4

%e ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....2..2..1..0..0..0..0

%e ..0..1..1..0..0..1..1....0..1..1..0..0..0..0....2..2..1..0..0..0..0

%e ..1..2..2..1..1..2..2....1..2..2..1..0..0..0....1..1..0..0..0..0..0

%e ..1..2..2..1..1..2..2....1..2..2..1..0..0..0....0..0..0..0..0..0..0

%K nonn

%O 1,2

%A _R. H. Hardin_ Oct 09 2011