%I #5 Mar 31 2012 12:36:28
%S 1,7,22,47,90,211,547,1364,3190,7411,17630,42520,101976,242655,576887,
%T 1375887,3286861,7846310,18711439,44618322,106438197,253962851,
%U 605897990,1445349638,3447805485,8224998562,19621841396,46809917238,111668032901
%N Number of nX6 0..4 arrays with each element equal to the number its horizontal and vertical neighbors equal to 2
%C Every 0 is next to 0 2's, every 1 is next to 1 2's, every 2 is next to 2 2's, every 3 is next to 3 2's, every 4 is next to 4 2's
%C Column 6 of A197061
%H R. H. Hardin, <a href="/A197059/b197059.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) +8*a(n-4) +8*a(n-5) +4*a(n-6) -3*a(n-7) -15*a(n-8) -28*a(n-9) -33*a(n-10) -39*a(n-11) -28*a(n-12) +8*a(n-13) +49*a(n-14) +79*a(n-15) +72*a(n-16) +21*a(n-17) -29*a(n-18) -51*a(n-19) -30*a(n-20) +10*a(n-21) +37*a(n-22) +27*a(n-23) +3*a(n-24) -17*a(n-25) -24*a(n-26) -16*a(n-27) -4*a(n-28) +a(n-29) +a(n-30) +2*a(n-31) +a(n-32)
%e Some solutions for n=4
%e ..0..0..1..1..1..1....1..1..0..0..0..0....1..2..2..2..2..1....0..1..2..2..2..1
%e ..0..1..2..2..2..2....2..2..1..0..0..0....1..2..3..3..2..1....0..1..2..3..2..1
%e ..0..1..2..3..3..2....2..2..1..0..0..0....1..2..2..2..2..1....0..1..2..3..2..1
%e ..0..1..2..2..2..2....1..1..0..0..0..0....0..1..1..1..1..0....0..1..2..2..2..1
%K nonn
%O 1,2
%A _R. H. Hardin_ Oct 09 2011