login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,2,4 for x=0,1,2,3,4
1

%I #5 Mar 31 2012 12:36:27

%S 6,136,1370,16876,199125,2369631,28194191,335586650,3993458371,

%T 47516896629,565414492412,6728166888869,80061424960490,

%U 952681438970742,11336327457310421,134895508948869550,1605175914338415794

%N Number of nX4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,1,0,2,4 for x=0,1,2,3,4

%C Every 0 is next to 0 3's, every 1 is next to 1 1's, every 2 is next to 2 0's, every 3 is next to 3 2's, every 4 is next to 4 4's

%C Column 4 of A196856

%H R. H. Hardin, <a href="/A196852/b196852.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 3*a(n-1) +44*a(n-2) +439*a(n-3) +2358*a(n-4) +11863*a(n-5) +28679*a(n-6) -11270*a(n-7) -149308*a(n-8) -295402*a(n-9) -2228330*a(n-10) -19228360*a(n-11) -60254463*a(n-12) -74313814*a(n-13) -106961452*a(n-14) -527951794*a(n-15) -1758498877*a(n-16) -3126689375*a(n-17) -3789487234*a(n-18) -8412794831*a(n-19) -10337209736*a(n-20) -26486372898*a(n-21) -78337473663*a(n-22) -127199808198*a(n-23) -323277632632*a(n-24) -169948289048*a(n-25) +4728728603*a(n-26) -633182323471*a(n-27) +1466293829086*a(n-28) -129153750426*a(n-29) -1289469591472*a(n-30) +5626662105879*a(n-31) -3983572694173*a(n-32) +4831984512556*a(n-33) +8363406361056*a(n-34) -12177696095666*a(n-35) +16228097196690*a(n-36) -24975008047077*a(n-37) +26648341445063*a(n-38) -2419309760310*a(n-39) +49505011284249*a(n-40) +14772948661100*a(n-41) -51385564602681*a(n-42) -15915374110459*a(n-43) -149241993920530*a(n-44) +34095131702070*a(n-45) -18197889307507*a(n-46) +128489823150337*a(n-47) +38212185785139*a(n-48) +13912500827527*a(n-49) -28663977282722*a(n-50) -103763038893751*a(n-51) +4585921844122*a(n-52) +3074955884454*a(n-53) +83721661579028*a(n-54) +22568688661085*a(n-55) -37887209978584*a(n-56) -30313463388951*a(n-57) -24160596951890*a(n-58) +15692607343328*a(n-59) +18813402877985*a(n-60) +3033411089449*a(n-61) -4034360302166*a(n-62) -7641869239431*a(n-63) -1375559233702*a(n-64) +4881391478198*a(n-65) +360279726438*a(n-66) +333190340384*a(n-67) -959857367586*a(n-68) -70724996883*a(n-69) +255267952230*a(n-70) -76864558036*a(n-71) +27272363590*a(n-72) +2649470463*a(n-73) -13665137014*a(n-74) +1082028166*a(n-75) -637366413*a(n-76) -278278238*a(n-77) +15822933*a(n-78) -37459459*a(n-79) -41250182*a(n-80) -9970087*a(n-81) -10768978*a(n-82) -1013163*a(n-83) -433698*a(n-84) -7597*a(n-85) -22129*a(n-86) -3820*a(n-87) -1118*a(n-88) -150*a(n-89) for n>92

%e Some solutions for n=5

%e ..0..2..0..0....0..2..0..0....0..2..0..1....0..2..0..2....0..0..2..0

%e ..0..2..1..0....0..2..1..1....1..1..0..1....0..1..1..0....0..0..1..0

%e ..0..0..1..0....1..0..2..0....0..2..2..0....0..0..0..0....1..0..1..0

%e ..2..0..2..1....1..0..2..0....0..0..2..1....0..0..1..0....1..2..3..2

%e ..1..1..0..1....0..2..1..1....0..0..0..1....2..0..1..0....0..0..2..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Oct 06 2011