%I
%S 2,8,8,1,0,6,5,7,2,8,3,1,2,9,8,9,6,7,2,7,3,9,8,9,5,9,9,4,5,0,8,3,9,2,
%T 5,3,4,5,5,0,0,3,4,9,2,3,1,6,1,2,3,0,3,1,5,7,6,3,1,8,7,8,6,9,3,8,2,3,
%U 1,4,4,3,9,3,5,1,0,4,3,4,2,5,5,7,7,1,0,3,5,1,5,6,7,7,7,5,6,8,4,9
%N Decimal expansion of the slope (negative) at the point of tangency of the curves y=c+1/x and y=sin(x), where c is given by A196774.
%e x=0.28810657283129896727398959945083925345500...
%t Plot[{1/x + .42, Sin[x]}, {x, 0, 2 Pi}]
%t t = x /. FindRoot[1 == (x^2) Cos[x], {x, 1.5, 2.5}, WorkingPrecision > 100]
%t RealDigits[t] (* A196773 *)
%t c = N[1/t + Sin[t], 100]
%t RealDigits[c] (* A196774 *)
%t slope = N[1/t^2, 100]
%t RealDigits[slope](* A196775 *)
%Y Cf. A196774.
%K nonn,cons
%O 0,1
%A _Clark Kimberling_, Oct 06 2011
