login
Decimal expansion of the least x>0 satisfying 2=x*sin(x).
5

%I #7 Aug 09 2021 14:05:48

%S 6,5,9,1,4,6,7,8,0,7,2,7,6,4,5,0,4,0,8,6,8,9,1,9,3,5,3,6,4,5,6,4,7,7,

%T 3,6,6,6,0,6,9,5,3,6,2,0,3,2,8,7,0,8,9,1,3,0,8,6,4,5,7,2,7,8,2,4,9,4,

%U 9,9,7,0,6,6,6,9,6,3,3,5,0,8,4,7,8,9,6,7,6,7,2,2,6,7,5,4,6,3,5,0,6

%N Decimal expansion of the least x>0 satisfying 2=x*sin(x).

%e x=6.591467807276450408689193536456477366606...

%t Plot[{1/x, 2/x, 3/x, 4/x, Sin[x]}, {x, 0, 4 Pi}]

%t t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100]

%t RealDigits[t] (* A133866 *)

%t t = x /. FindRoot[2/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196760 *)

%t t = x /. FindRoot[3/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196761 *)

%t t = x /. FindRoot[4/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196762 *)

%t t = x /. FindRoot[5/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196763 *)

%t t = x /. FindRoot[6/x == Sin[x], {x, 6, 7}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196764 *)

%Y Cf. A196765.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Oct 06 2011