login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of the least x>0 satisfying 1=6x*sin(x).
5

%I #7 Aug 09 2021 14:05:25

%S 4,1,4,1,5,9,9,3,3,2,3,1,8,7,2,9,7,5,5,1,3,7,5,7,8,9,6,3,2,0,4,4,2,1,

%T 1,2,3,0,9,6,7,5,1,8,1,1,8,3,7,6,6,2,0,1,2,3,4,3,7,5,4,9,7,4,3,7,0,1,

%U 9,0,4,2,9,3,4,9,2,2,5,1,8,8,1,4,8,1,6,1,6,6,4,3,9,2,8,2,8,1,2,2,9

%N Decimal expansion of the least x>0 satisfying 1=6x*sin(x).

%e x=0.4141599332318729755137578963204421123096...

%t Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]

%t t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A133866 *)

%t t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196624 *)

%t t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196754 *)

%t t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196755 *)

%t t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196756 *)

%t t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

%t RealDigits[t] (* A196757 *)

%Y Cf. A196758.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Oct 06 2011