Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Aug 09 2021 14:05:25
%S 4,1,4,1,5,9,9,3,3,2,3,1,8,7,2,9,7,5,5,1,3,7,5,7,8,9,6,3,2,0,4,4,2,1,
%T 1,2,3,0,9,6,7,5,1,8,1,1,8,3,7,6,6,2,0,1,2,3,4,3,7,5,4,9,7,4,3,7,0,1,
%U 9,0,4,2,9,3,4,9,2,2,5,1,8,8,1,4,8,1,6,1,6,6,4,3,9,2,8,2,8,1,2,2,9
%N Decimal expansion of the least x>0 satisfying 1=6x*sin(x).
%e x=0.4141599332318729755137578963204421123096...
%t Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]
%t t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A133866 *)
%t t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196624 *)
%t t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196754 *)
%t t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196755 *)
%t t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196756 *)
%t t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
%t RealDigits[t] (* A196757 *)
%Y Cf. A196758.
%K nonn,cons
%O 0,1
%A _Clark Kimberling_, Oct 06 2011