%I #14 Jan 04 2018 15:54:27
%S 3,3783,712999,49917253,136990592551,7248859698551,59868530942221,
%T 4656948575329
%N Smallest positive m such that gcd(2^m3,3^m2) has a prime divisor A196627(n).
%C Terms corresponding to large terms of A196627: 98094352361503, 1857852631158188383144, 61512962997290050622501, 52562720950794975283168567, 4014260345679275427187521366, 534798197159783071320442036049, 5184100446504760872368997541979245, 58816866228485537800474853024132386, 1849888032222116576474743304081139265, 90975863449090968810811203864826789811575855795214739996300735537197. (may not be in order)
%H A. S. Izotov, <a href="http://www.fq.math.ca/Papers1/432/paper4326.pdf">On prime divisors of GCD(3^n2,2^n3)</a>, Fibonacci Quarterly 43, May 2005, pp. 130131.
%Y Cf. A109768
%K nonn,hard,more
%O 1,1
%A _Max Alekseyev_, Oct 04 2011
