login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Greatest common divisor of sums of first n prime numbers and first n composite numbers.
3

%I #10 Jul 29 2017 10:02:23

%S 2,5,2,1,1,1,1,1,2,1,4,1,7,1,8,1,1,1,1,1,8,7,1,1,1,3,2,1,4,3,1,1,28,1,

%T 1,1,1,1,2,1,1,3,1,1,2,1,1,1,26,1,2,1,1,1,2,1,6,1,1,1,2,1,1,1,1,1,2,1,

%U 1,1,4,1,1,1,1,1,10,1,2,1,1,1,1,3,8

%N Greatest common divisor of sums of first n prime numbers and first n composite numbers.

%C a(n) = gcd(A007504(n),A053767(n));

%C a(A196528(n)) = n and a(m) <> n for m < A196528(n).

%H Reinhard Zumkeller, <a href="/A196527/b196527.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = gcd(2,4) = 2;

%e a(2) = gcd(2+3,4+6) = gcd(5,10) = 5;

%e a(3) = gcd(2+3+5,4+6+8) = gcd(10,18) = 2;

%e a(4) = gcd(2+3+5+7,4+6+8+9) = gcd(17,19) = 1.

%t Module[{nn=90,pr,cmp},pr=Accumulate[Prime[Range[nn]]];cmp=Accumulate[ Take[Select[Range[2nn],CompositeQ],nn]];GCD@@#&/@Thread[{pr,cmp}]] (* _Harvey P. Dale_, Jul 29 2017 *)

%Y Cf. A196529.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Oct 03 2011