login
A196445
Numbers k >= 2 such that A055035(k) is an odd integer.
3
2, 6, 14, 18, 22, 38, 46, 54, 62, 86, 94, 98, 118, 134, 142, 158, 162, 166, 206, 214, 242, 254, 262, 278, 302, 326, 334, 358, 382, 398, 422, 446, 454, 478, 486, 502, 526, 542, 566, 614, 622, 662, 686, 694, 718, 722, 734, 758, 766, 838, 862, 878, 886, 926, 934, 958, 974, 982, 998
OFFSET
1,1
COMMENTS
All terms are even.
All these cases are so-called reversed cases when degree of minimal polynomial of cos(Pi/n) = 2*degree of minimal polynomial of sin(Pi/n) (in rest of cases is vice versa).
For k = 1, A055035(1) = 1 is also odd. - Wolfdieter Lang, Nov 06 2019
The elements of the set {k == 2 (mod 4): if k = 2 then 1, otherwise phi(k/2)/2 is odd)} sorted increasingly, where phi = A000010 (Euler's totient). - Wolfdieter Lang, Nov 06 2019
LINKS
FORMULA
a(n) = 2*A197504(n).
MATHEMATICA
a[n_] := If[n == 2, 1, EulerPhi[n]/{1, 1, 2, 1}[[Mod[n, 4] + 1]]]; aa = {}; Do[If[OddQ[a[n]], AppendTo[aa, n]], {n, 2, 1000}]; aa
PROG
(PARI) isok(k) = ((k%4) == 2) && ((k==2) || (eulerphi(k/2)/2 % 2)==1); \\ after Wolfdieter Lang comment; Michel Marcus, Jan 29 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Oct 15 2011
EXTENSIONS
Name made more specific by Wolfdieter Lang, Nov 06 2019
STATUS
approved