Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 02 2019 14:39:09
%S 1,3,15,44,179,741,2989,13932,79433,456134,3096812,21083037,151022325,
%T 1119202826,8627014654
%N Number of different ways to select 10 disjoint subsets from {1..n} with equal element sum.
%e a(20) = 3: {1,18}, {2,17}, {3,16}, {4,15}, {5,14}, {6,13}, {7,12}, {8,11}, {9,10}, {19} have element sum 19; {1,19}, {2,18}, {3,17}, {4,16}, {5,15}, {6,14}, {7,13}, {8,12}, {9,11}, {20} have element sum 20; {1,20}, {2,19}, {3,18}, {4,17}, {5,16}, {6,15}, {7,14}, {8,13}, {9,12}, {10,11} have element sum 21.
%t b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0 &, k], 1, If[Total[l] > n*(n - 1)/2, 0, b[l, n - 1, k]] + Sum[If[l[[j]] - n < 0, 0, b[Sort[Table[l[[i]] - If[i == j, n, 0], {i, 1, k}]], n - 1, k]], {j, 1, k}]]];
%t T[n_, k_] := Sum[b[Array[t &, k], n, k], {t, 2*k - 1, Floor[n*(n + 1)/(2*k) ]}]/k!;
%t a[n_] := T[n, 10];
%t Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 19, 30}] (* _Jean-François Alcover_, Jun 08 2018, after _Alois P. Heinz_ *)
%Y Column k=10 of A196231. Cf. A000225, A161943, A164934, A164949, A196232, A196233, A196234, A196235, A196236.
%K nonn,more
%O 19,2
%A _Alois P. Heinz_, Sep 29 2011
%E a(31)-a(33) from _Bert Dobbelaere_, Sep 02 2019