Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 May 05 2020 17:07:33
%S 0,0,2,8,14,28,34,56,70,92,106,144,158,204,226,256,286,348,370,440,
%T 470,516,554,640,670,748,794,864,910,1020,1050,1168,1230,1308,1370,
%U 1464,1510,1652,1722,1816,1878,2036,2082,2248,2326,2420,2506,2688,2750,2916,2994
%N Number of 2 X 2 integer matrices with elements from {1,...,n} whose determinant is 1.
%C It is also the number of 2 X 2 integer matrices with elements from {1,...,n} whose determinant is -1.
%H Andrew Howroyd, <a href="/A196227/b196227.txt">Table of n, a(n) for n = 0..1000</a>
%F From _Andrew Howroyd_, May 05 2020: (Start)
%F a(n) = A171503(n) - (2*n + 1) for n > 0.
%F a(n) = -2*(n + 1) + 4*Sum_{k=1..n} phi(k) for n > 0.
%F a(n) = 2 * A209978(n). (End)
%p a:= proc(n) option remember; `if`(n<2, 0,
%p a(n-1)-2 + 4*numtheory[phi](n))
%p end:
%p seq(a(n), n=0..60); # _Alois P. Heinz_, May 05 2020
%t Table[cnt = 0; Do[If[a*d-b*c == 1, cnt++], {a, n}, {b, n}, {c, n}, {d, n}]; cnt, {n, 50}] (* _T. D. Noe_, Oct 11 2011 *)
%o (PARI) a(n) = if(n < 1, 0, 4*sum(k=1, n, eulerphi(k)) - 2*(n + 1)) \\ _Andrew Howroyd_, May 05 2020
%Y Cf. A171503 (determinants of matrices that include zero), A209978, A210000.
%K nonn
%O 0,3
%A _Aldo González Lorenzo_, Sep 29 2011
%E a(0)=0 prependend by _Andrew Howroyd_, May 05 2020