

A196223


Natural numbers n such that Sum_{k = 1..pi(n)1} p(k) == p(pi(n)) mod n, where p(k) denotes the kth prime and pi(n) is the number of primes strictly less than n.


0



6, 7, 15, 27, 41, 55, 172, 561, 1334, 6571, 11490, 429705, 2173016, 4417701, 9063353, 9531624, 40411847, 64538709, 83537963, 121316228, 181504240, 222586609
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

2+3+5+7+11==13 (mod 15) and so 15 has this property.


MATHEMATICA

Reap[Module[{c = 0}, For[n = 4, n <= 10^6, n++, If[PrimeQ[n  1], c += NextPrime[n  1, 1]]; If[Mod[c, n] == NextPrime[n, 1], Sow[n]]]]]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



