login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{j=1..n} c(j)^c(n+1-j) where c(k) is the k-th composite number.
1

%I #30 Aug 24 2021 06:28:38

%S 256,5392,116288,2210465,28444929,255528577,4009404505,153081728914,

%T 5171603025026,62036152111810,699273704703624,25869244015854483,

%U 1361620781025221899,22882871550589429987,317257878688421267438,11004311280566297309676,258894081066969988746661

%N a(n) = Sum_{j=1..n} c(j)^c(n+1-j) where c(k) is the k-th composite number.

%C For n smaller than 100, a(n) can be approximated by exp(0.0075*n^2 + 3.0857*n - 0.166).

%H Vincenzo Librandi, <a href="/A196152/b196152.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) = Sum_{j=1..n} A002808(j)^A002808(n+1-j).

%e For n = 4, a(4) = 4^9 + 6^8 + 8^6 + 9^4 = 2210465.

%t Composite[n_Integer] := FixedPoint[n + PrimePi[#] + 1&, n]; Table[Sum[Composite[j]^Composite[i+1-j],{j,i}],{i,10}]

%o (PARI) iscomposite(n) = if (n==1, 0, !isprime(n));

%o a(n) = {vc = []; ic = 1; while (#vc != n, if (iscomposite(ic), vc = concat(vc, ic)); ic++); sum(i=1, n, vc[i]^vc[n+1-i]);} \\ _Michel Marcus_, Aug 06 2014

%Y Cf. A002808.

%K nonn

%O 1,1

%A _Josh Kirklin_, Sep 28 2011