Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 17 2024 04:54:01
%S 0,1,4,4,16,16,9,9,64,64,64,36,36,36,256,16,36,144,16,144,144,256,144,
%T 64,1024,144,576,81,144,576,256,25,1024,144,576,256,64,64,576,256,144,
%U 324,81,576,2304,576,576,100,324,2304,576,324,25,1024,4096,144,256,576,144,1024,256,1024,1296,36,2304
%N The 1st multiplicative Zagreb index of the rooted tree with Matula-Goebel number n.
%C The 1st multiplicative Zagreb index of a connected graph is the product of the squared degrees of the vertices of the graph. Alternatively, it is the square of the Narumi-Katayama index.
%C The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%H E. Deutsch, <a href="http://arxiv.org/abs/1111.4288">Tree statistics from Matula numbers</a>, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
%H F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H I. Gutman, <a href="http://www.imvibl.org/buletin/bulletin_1_13_19.pdf">Multiplicative Zagreb indices of trees</a>, Bulletin of International Mathematical Virtual Institute ISSN 1840-4367, Vol. 1, 2011, 13-19.
%H I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%H H. Narumi and M. Katayama, <a href="http://hdl.handle.net/2115/38010">Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons</a>, Mem. Fac. Engin. Hokkaido Univ., 16, 1984, 209-214.
%H Z. Tomovic and I. Gutman, <a href="https://www.shd.org.rs/JSCS/Vol66/No4.htm#Narumi">Narumi-Katayama index of phenylenes</a>, J. Serb. Chem. Soc., 66(4), 2001, 243-247.
%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F a(1)=0; a(2)=1, if n = prime(t) (the t-th prime, t>=2), then a(n)=a(t)*(1+G(t))^2/G(t)^2; if n=rs (r,s>=2), then a(n)=a(r)*a(s)*G(n)^2/[G(r)*G(s)]^2; G(m) denotes the number of prime divisors of m counted with multiplicities. The Maple program is based on this recursive formula.
%F a(n) = (A196063(n))^2.
%e a(7)=9 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y (1*9*1*1=9).
%e a(2^m) = m^2 because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
%p with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif n = 2 then 1 elif bigomega(n) = 1 then a(pi(n))*(1+bigomega(pi(n)))^2/bigomega(pi(n))^2 else a(r(n))*a(s(n))*bigomega(n)^2/(bigomega(r(n))^2*bigomega(s(n))^2) end if end proc: seq(a(n), n = 1 .. 65);
%Y Cf. A196063, A196064.
%K nonn
%O 1,3
%A _Emeric Deutsch_, Oct 01 2011