Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jun 25 2024 12:32:15
%S 0,1,2,2,2,2,3,3,2,2,2,3,3,3,2,4,3,3,4,3,3,2,3,4,2,3,3,3,3,3,2,5,2,3,
%T 3,4,4,4,3,4,3,3,3,3,3,3,3,5,3,3,3,3,5,4,2,4,4,3,3,4,4,2,3,6,3,3,4,3,
%U 3,3,4,5,3,4,3,4,3,3,3,5,4,3,3,4,3,3,3,4,5,4,3,3,2,3,4,6,3,3,3,4,3,3,4,4,3,5,4,5,3,3
%N Maximum vertex-degree in the rooted tree with Matula-Goebel number n.
%C The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%H Reinhard Zumkeller, <a href="/A196046/b196046.txt">Table of n, a(n) for n = 1..10000</a>
%H Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Tree statistics from Matula numbers</a>, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
%H F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F a(1)=0; if n=prime(t) (=the t-th prime), then a(n) = max(a(t), 1+G(t)); if n=r*s (r,s>=2), then a(n)=max(a(r),a(s), G(r)+G(s)); G(m) is the number of prime divisors of m counted with multiplicity. The Maple program is based on this recursive formula.
%F The Gutman et al. references contain a different recursive formula.
%e a(7)=3 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y.
%e a(2^m) = m because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
%p with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 then max(a(pi(n)), 1+bigomega(pi(n))) else max(a(r(n)), a(s(n)), bigomega(r(n))+bigomega(s(n))) end if end proc: seq(a(n), n = 1 .. 110);
%t r[n_] := FactorInteger[n][[1, 1]];
%t s[n_] := n/r[n];
%t a[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, Max[a[PrimePi[n]], 1 + PrimeOmega[PrimePi[n]]], True, Max[a[r[n]], a[s[n]], PrimeOmega[r[n]] + PrimeOmega[s[n]]]];
%t Table[a[n], {n, 1, 110}] (* _Jean-François Alcover_, Jun 25 2024, after Maple code *)
%o (Haskell)
%o import Data.List (genericIndex)
%o a196046 n = genericIndex a196046_list (n - 1)
%o a196046_list = 0 : g 2 where
%o g x = y : g (x + 1) where
%o y | t > 0 = max (a196046 t) (a001222 t + 1)
%o | otherwise = maximum [a196046 r, a196046 s, a001222 r + a001222 s]
%o where t = a049084 x; r = a020639 x; s = x `div` r
%o -- _Reinhard Zumkeller_, Sep 03 2013
%Y Cf. A049084, A020639, A001222.
%K nonn
%O 1,3
%A _Emeric Deutsch_, Sep 26 2011