login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196040 Positive integers a for which there is a (4/3)-Pythagorean triple (a,b,c) satisfying a<=b. 6
7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 26, 27, 27, 28, 28, 29, 30, 32, 33, 33, 34, 35, 36, 36, 39, 39, 40, 40, 40, 41, 42, 44, 44, 45, 45, 46, 47, 48, 48, 49, 51, 52, 54, 54, 55, 56, 56, 56, 57, 58, 60, 60, 63, 63, 63, 63, 64, 64, 66, 68 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.

LINKS

Table of n, a(n) for n=1..67.

MATHEMATICA

z8 = 800; z9 = 200; z7 = 200;

k = -4/3; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];

d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]

t[a_] := Table[d[a, b], {b, a, z8}]

u[n_] := Delete[t[n], Position[t[n], 0]]

Table[u[n], {n, 1, 15}]

t = Table[u[n], {n, 1, z8}];

Flatten[Position[t, {}]]

u = Flatten[Delete[t, Position[t, {}]]];

x[n_] := u[[3 n - 2]];

Table[x[n], {n, 1, z7}]   (* A196033 *)

y[n_] := u[[3 n - 1]];

Table[y[n], {n, 1, z7}]   (* A196034 *)

z[n_] := u[[3 n]];

Table[z[n], {n, 1, z7}]   (* A196035 *)

x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]

y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]

z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]

f = Table[x1[n], {n, 1, z9}];

x2 = Delete[f, Position[f, 0]]   (* A196036 *)

g = Table[y1[n], {n, 1, z9}];

y2 = Delete[g, Position[g, 0]]   (* A196037 *)

h = Table[z1[n], {n, 1, z9}];

z2 = Delete[h, Position[h, 0]]   (* A196038 *)

CROSSREFS

Cf. A195770, A196041, A196042, A196043.

Sequence in context: A210147 A340741 A097338 * A196043 A030569 A138580

Adjacent sequences:  A196037 A196038 A196039 * A196041 A196042 A196043

KEYWORD

nonn

AUTHOR

Clark Kimberling, Sep 27 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 13:09 EST 2022. Contains 350598 sequences. (Running on oeis4.)