login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Powers of 13 which have no zero in their decimal expansion.
23

%I #32 Sep 08 2022 08:45:59

%S 1,13,169,2197,28561,371293,62748517,137858491849,3937376385699289

%N Powers of 13 which have no zero in their decimal expansion.

%C Probably finite. Is 3937376385699289 the largest term?

%C No further terms up to 13^25000. - _Harvey P. Dale_, Oct 01 2011

%C No further terms up to 13^45000. - _Vincenzo Librandi_, Jul 31 2013

%C No further terms up to 13^(10^9). - _Daniel Starodubtsev_, Mar 22 2020

%H M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>, OEIS Wiki, Mar 07 2014

%H C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_607.htm">Puzzle 607. A zeroless Prime power</a>, on primepuzzles.net, Sept. 24, 2011.

%H W. Schneider, <a href="http://oeis.org/A007496/a007496.html">NoZeros: Powers n^k without Digit Zero</a> (local copy of www.wschnei.de/digit-related-numbers/nozeros.html), as of Jan 30 2003.

%F Equals A001022 intersect A052382 (as a set).

%F Equals A001022 o A195944 (as a function).

%t Select[13^Range[0,250],DigitCount[#,10,0]==0&] (* _Harvey P. Dale_, Oct 01 2011 *)

%o (PARI) for(n=0,9999, is_A052382(13^n) && print1(13^n,","))

%o (Magma) [13^n: n in [0..2*10^4] | not 0 in Intseq(13^n)]; // _Bruno Berselli_, Sep 26 2011

%Y For other zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A195946 (x=11), A195945, A195942, A195943, A103662.

%Y For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944 and also A020665.

%Y For other related sequences, see A052382, A027870, A102483, A103663.

%K nonn,base

%O 1,2

%A _M. F. Hasler_, Sep 25 2011