login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 9n nonattacking kings on an 18 X 2n cylindrical chessboard.
6

%I #16 Aug 28 2024 13:03:19

%S 5120,21508,109796,626780,3877300,25603228,178909300,1314748124,

%T 10105541204,80812754568,668845118276,5700499630916,49800720887968,

%U 444140848321356,4029482453905756,37080781799409148,345278411878468044,3246772078088155432,30781946900321278256

%N Number of ways to place 9n nonattacking kings on an 18 X 2n cylindrical chessboard.

%C This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 18, number of rows = 2n).

%H Alex V. Breger, <a href="/A195653/b195653.txt">Table of n, a(n) for n = 1..1000</a>

%H Artem M. Karavaev, <a href="http://zealint.ru/koroli-na-cilindricheskoj-doske-predlozhenie.html">Zealint blog</a> (in Russian)

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>

%H Vaclav Kotesovec, <a href="/A195653/a195653.txt">Generating function</a>

%H <a href="/index/Rec#order_400">Index entries for linear recurrences with constant coefficients</a>, order 400.

%F Recurrence order is 400.

%Y Cf. A137432, A195648, A195658.

%K nonn

%O 1,1

%A _Vaclav Kotesovec_, Sep 22 2011