login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 5n nonattacking kings on a vertical cylinder 10 X 2n.
2

%I #24 Aug 17 2024 15:39:17

%S 64,732,4392,18890,66532,205628,580664,1536814,3877300,9434784,

%T 22327496,51698178,117645348,263992580,585640568,1286898262,

%U 2805399156,6074441896,13076687560,28009586346,59732295204,126891641612,268638308152,566987715710

%N Number of ways to place 5n nonattacking kings on a vertical cylinder 10 X 2n.

%C Vertical cylinder: a chessboard where it is supposed that the columns 1 and 10 are in contact (number of columns = 10, number of rows = 2n).

%H Ray Chandler, <a href="/A195593/b195593.txt">Table of n, a(n) for n = 1..3299</a> (first 1000 terms from Jinyuan Wang)

%H Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (8,-26,44,-41,20,-4).

%F a(n) = -4*a(n-6) + 20*a(n-5) - 41*a(n-4) + 44*a(n-3) - 26*a(n-2) + 8*a(n-1).

%F G.f.: (1 + 56*x + 246*x^2 + 156*x^3 + 11*x^4)/((x-1)^4*(2*x-1)^2).

%F a(n) = (1771*n - 8709)*2^n + 235/3*n^3 + 880*n^2 + 12815/3*n + 8710.

%t LinearRecurrence[{8, -26, 44, -41, 20, -4}, {64, 732, 4392, 18890, 66532, 205628}, 20] (* _Jinyuan Wang_, Feb 26 2020 *)

%Y Cf. A194647, A173783, A137432.

%K nonn

%O 1,1

%A _Vaclav Kotesovec_, Sep 21 2011