login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 4n nonattacking kings on a vertical cylinder 8 X 2n.
2

%I #16 Aug 17 2024 15:32:06

%S 32,256,1220,4460,13932,39316,103508,259372,626780,1473764,3392964,

%T 7682812,17166476,37942900,83115188,180699980,390351420,838619524,

%U 1793087780,3817890076,8099228012,17125372436,36104600340,75916936300,159249370652,333329766436

%N Number of ways to place 4n nonattacking kings on a vertical cylinder 8 X 2n.

%C Vertical cylinder: a chessboard where it is supposed that the columns 1 and 8 are in contact (number of columns = 8, number of rows = 2n).

%H Ray Chandler, <a href="/A195592/b195592.txt">Table of n, a(n) for n = 1..3302</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (7, -19, 25, -16, 4).

%F Recurrence: a(n) = 4*a(n-5) - 16*a(n-4) + 25*a(n-3) - 19*a(n-2) + 7*a(n-1).

%F G.f.: -(1 + 25*x + 51*x^2 + 11*x^3)/((x-1)^3*(2*x-1)^2).

%F a(n) = (221*n - 779)*2^n + 44*n^2 + 324*n + 780.

%t LinearRecurrence[{7,-19,25,-16,4},{32,256,1220,4460,13932},30] (* _Harvey P. Dale_, Jan 15 2016 *)

%Y Cf. A194646, A173782, A137432.

%K nonn

%O 1,1

%A _Vaclav Kotesovec_, Sep 21 2011