login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: x/exp( Sum_{n>=1} a(n)*x^n/n ) = Sum_{n>=1} moebius(n)*x^n.
3

%I #5 Mar 30 2012 18:37:29

%S 1,3,4,11,11,30,43,83,121,243,386,710,1158,2061,3464,6099,10354,18057,

%T 30857,53471,91711,158634,272666,470750,810061,1397438,2406226,

%U 4149037,7146819,12319860,21225143,36583027,63033722,108634508,187191953,322598681,555899360,957989693

%N G.f.: x/exp( Sum_{n>=1} a(n)*x^n/n ) = Sum_{n>=1} moebius(n)*x^n.

%C Limit a(n+1)/a(n) = 1.7232625617 6384402416 0437963573 1635201885 2701526482 7413326383 0542284384 5757642887 ...

%e L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 11*x^5/5 + 30*x^6/6 +...

%e where

%e x/exp(L(x)) = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 - x^17 +...+ moebius(n)*x^n +...

%o (PARI) {a(n)=n*polcoeff(-log(sum(m=0,n,moebius(m+1)*x^m)+x*O(x^n)),n)}

%Y Cf. A195588, A008683 (Moebius), A073776.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Sep 20 2011