login
G.f.: x/exp( Sum_{n>=1} a(n)*x^n/n ) = Sum_{n>=1} moebius(n)*x^n.
2

%I #5 Mar 30 2012 18:37:29

%S 1,3,4,11,11,30,43,83,121,243,386,710,1158,2061,3464,6099,10354,18057,

%T 30857,53471,91711,158634,272666,470750,810061,1397438,2406226,

%U 4149037,7146819,12319860,21225143,36583027,63033722,108634508,187191953,322598681,555899360,957989693

%N G.f.: x/exp( Sum_{n>=1} a(n)*x^n/n ) = Sum_{n>=1} moebius(n)*x^n.

%C Limit a(n+1)/a(n) = 1.7232625617 6384402416 0437963573 1635201885 2701526482 7413326383 0542284384 5757642887 ...

%e L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 11*x^5/5 + 30*x^6/6 +...

%e where

%e x/exp(L(x)) = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 - x^17 +...+ moebius(n)*x^n +...

%o (PARI) {a(n)=n*polcoeff(-log(sum(m=0,n,moebius(m+1)*x^m)+x*O(x^n)),n)}

%Y Cf. A195588, A008683 (Moebius), A073776.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Sep 20 2011