login
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/5.
4

%I #16 Jun 05 2015 03:20:05

%S 1,40,60,99,4100,6100,10101,418140,622160,1030199,42646200,63454200,

%T 105070201,4349494240,6471706260,10716130299,443605766300,

%U 660050584300,1092940220301,45243438668340,67318687892360,111469186340399,4614387138404400

%N Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/5.

%C See A195500 for a discussion and references.

%F Conjecture: a(n) = 101*a(n-3) + 101*a(n-6) - a(n-9). - _R. J. Mathar_, Sep 21 2011

%F Empirical g.f.: x*(x^6+40*x^5+60*x^4-2*x^3+60*x^2+40*x+1) / (x^9-101*x^6-101*x^3+1). - _Colin Barker_, Jun 04 2015

%t r = 1/5; z = 26;

%t p[{f_, n_}] := (#1[[2]]/#1[[

%t 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[

%t 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[

%t Array[FromContinuedFraction[

%t ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];

%t {a, b} = ({Denominator[#1], Numerator[#1]} &)[

%t p[{r, z}]] (* A195571, A195572 *)

%t Sqrt[a^2 + b^2] (* A195573 *)

%t (* _Peter J. C. Moses_, Sep 02 2011 *)

%Y Cf. A195500, A195572, A195573.

%K nonn

%O 1,2

%A _Clark Kimberling_, Sep 21 2011