login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of numbers up to n-1 used as divisors in A008336(n), n >= 2; a(1) = 1.
2

%I #23 May 04 2019 00:24:10

%S 1,1,1,1,1,1,6,6,6,6,60,60,720,720,10080,10080,10080,10080,181440,

%T 181440,3628800,3628800,79833600,79833600,79833600,79833600,

%U 2075673600,2075673600,58118860800,58118860800,1743565824000,1743565824000,1743565824000,1743565824000

%N Product of numbers up to n-1 used as divisors in A008336(n), n >= 2; a(1) = 1.

%C This sequence provides more insight into the asymptotic behavior of log(A008336(n)). - _Daniel Forgues_, Sep 21 2011

%H Nathaniel Johnston, <a href="/A195504/b195504.txt">Table of n, a(n) for n = 1..500</a>

%F Sqrt((n-1)! / A008336(n)), n >= 1.

%p A008336 := proc(n) option remember; if(n=1)then 1: elif(procname(n-1) mod (n-1)=0)then procname(n-1)/(n-1): else procname(n-1)*(n-1): fi: end: A195504 := proc(n) option remember: if(n=1)then 1: elif(A008336(n)<A008336(n-1))then (n-1)*procname(n-1): else procname(n-1): fi: end: seq(A195504(n),n=1..40); # _Nathaniel Johnston_, Sep 29 2011

%Y Cf. A008336, A000142.

%K nonn,easy

%O 1,7

%A _Daniel Forgues_, Sep 19 2011