login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of the right triangle ABC having sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
5

%I #10 Jul 18 2021 10:03:44

%S 4,6,2,9,9,9,2,8,1,8,7,2,9,4,5,1,4,5,2,5,2,4,9,1,5,0,8,8,0,0,5,4,7,8,

%T 7,1,6,2,5,0,7,4,6,2,2,4,2,6,4,0,6,4,3,1,7,5,1,9,0,9,4,4,8,2,9,9,3,2,

%U 7,6,6,5,8,4,3,7,5,6,1,8,7,5,0,9,0,4,1,7,1,3,4,1,1,0,7,0,4,8,4,3,7,6

%N Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of the right triangle ABC having sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).

%C See A195284 for definitions and a general discussion.

%e Philo(ABC,I)=0.4629992818729451452524915088005478716250...

%t a = b - 1; b = (1 + Sqrt[5])/2; c = Sqrt[3];

%t f = 2 a*b/(a + b + c);

%t x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]

%t x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]

%t x3 = f*Sqrt[2]

%t N[x1, 100]

%t RealDigits[%] (* (A) A195407 *)

%t N[x2, 100]

%t RealDigits[%] (* (B) A195408 *)

%t N[x3, 100]

%t RealDigits[%] (* (C) A195409 *)

%t N[(x1 + x2 + x3)/(a + b + c), 100]

%t RealDigits[%] (* Philo(ABC,I) A195410 *)

%Y Cf. A195284.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Sep 17 2011

%E a(99) corrected by _Georg Fischer_, Jul 18 2021