login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).
5

%I #9 Dec 24 2017 09:24:15

%S 1,2,8,7,2,1,2,0,8,2,6,1,4,7,9,8,7,6,6,1,9,8,3,9,0,5,3,0,2,7,3,1,7,2,

%T 8,5,8,2,4,6,3,9,2,3,4,1,3,3,1,4,5,3,3,0,1,5,7,5,1,8,7,7,1,4,4,5,8,3,

%U 6,5,9,3,8,8,1,8,0,7,6,8,0,5,1,9,5,6,1,1,3,2,4,7,2,5,3,3,9,9,3,9

%N Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(3),sqrt(5)).

%C See A195284 for definitions and a general discussion.

%H G. C. Greubel, <a href="/A195367/b195367.txt">Table of n, a(n) for n = 1..10000</a>

%e (C)=1.2872120826147987661983905302731728582463923413314...

%t a = Sqrt[2]; b = Sqrt[3]; c = Sqrt[5];

%t f = 2 a*b/(a + b + c);

%t x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]

%t x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]

%t x3 = f*Sqrt[2]

%t N[x1, 100]

%t RealDigits[%] (* (A) A195365 *)

%t N[x2, 100]

%t RealDigits[%] (* (B) A195366 *)

%t N[x3, 100]

%t RealDigits[%] (* (C) A195367 *)

%t N[(x1 + x2 + x3)/(a + b + c), 100]

%t RealDigits[%] (* Philo(ABC,I) A195368 *)

%Y Cf. A195284.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Sep 16 2011