login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and vertex angles of degree measure 30,60,90.
3

%I #5 Mar 30 2012 18:57:45

%S 7,5,7,8,7,4,7,6,3,9,2,6,0,2,3,9,9,8,8,1,2,1,8,6,7,4,7,4,2,7,0,0,9,5,

%T 3,0,3,4,6,7,9,2,5,4,0,1,9,4,4,5,2,0,3,5,8,4,1,3,3,3,8,1,7,4,6,1,0,0,

%U 9,1,5,8,9,3,3,7,9,8,1,0,2,3,2,1,8,3,1,2,7,1,1,0,1,2,8,5,8,2,1,3

%N Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and vertex angles of degree measure 30,60,90.

%C See A195284 for definitions and a general discussion.

%e (A)=0.7578747639260239988121867474270095303467925401944...

%e (A)=(4*sqrt(6-3*sqrt(3)))/(3+sqrt(3))

%e (B)=2-(2/3)sqrt(3)

%e (C)=sqrt(6)-sqrt(2)

%t a = 1; b = Sqrt[3]; c = 2;

%t f = 2 a*b/(a + b + c);

%t x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]

%t x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]

%t x3 = f*Sqrt[2]

%t N[x1, 100]

%t RealDigits[%] (* (A) A195348 *)

%t N[x2, 100]

%t RealDigits[%] (* (B) A093821 *)

%t N[x3, 100]

%t RealDigits[%] (* (C) A120683 *)

%t N[(x1 + x2 + x3)/(a + b + c), 100]

%t RealDigits[%] (* A195380 *)

%Y Cf. A195284, A093821, A120683, A195380.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Sep 17 2011