login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of an irregular triangle read by rows in which row n lists the next A026741(n+1) natural numbers A000027.
2

%I #27 Jun 16 2017 02:55:39

%S 1,9,11,45,39,126,94,270,185,495,321,819,511,1260,764,1836,1089,2565,

%T 1495,3465,1991,4554,2586,5850,3289,7371,4109,9135,5055,11160,6136,

%U 13464,7361,16065,8739,18981,10279,22230,11990,25830,13881

%N Row sums of an irregular triangle read by rows in which row n lists the next A026741(n+1) natural numbers A000027.

%C The integers in same rows of the source triangle have a property related to Euler's Pentagonal Theorem.

%C Note that the column 1 of the mentioned triangle gives the positive terms of A001318 (see example).

%H G. C. Greubel, <a href="/A195309/b195309.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-6,0,4,0,-1).

%F a(n) = (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32 . - _R. J. Mathar_, Oct 08 2011

%F G.f. x*(1+9*x+7*x^2+9*x^3+x^4) / ( (x-1)^4*(1+x)^4 ). - _R. J. Mathar_, Oct 08 2011

%e a(1) = 1

%e a(2) = 2+3+4 = 9

%e a(3) = 5+6 = 11

%e a(4) = 7+8+9+10+11 = 45

%e a(5) = 12+13+14 = 39

%e a(6) = 15+16+17+18+19+20+21 = 126

%e a(7) = 22+23+24+25 = 94

%e a(8) = 26+27+28+29+30+31+32+33+34 = 270

%e a(9) = 35+36+37+38+39 = 185

%p A195309 := proc(n)

%p (n+1)*(9*n^2+18*n-1+(3*n^2+6*n+1)*(-1)^n)/32

%p end proc:

%p seq(A195309(n),n=1..60) ; # _R. J. Mathar_, Oct 08 2011

%t LinearRecurrence[{0,4,0,-6,0,4,0,-1},{1,9,11,45,39,126,94,270},80] (* _Harvey P. Dale_, Jun 22 2015 *)

%Y Cf. A026741, A195310, A195311, A004188 (bisection).

%K nonn

%O 1,2

%A _Omar E. Pol_, Sep 21 2011