login
Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(8,15,17).
4

%I #10 Mar 30 2012 18:57:45

%S 6,9,9,7,1,4,2,2,7,3,8,1,4,3,6,0,5,6,5,0,4,8,9,8,3,4,5,3,0,5,4,6,9,9,

%T 6,9,1,8,2,5,6,7,8,0,0,1,8,6,3,1,6,6,3,4,5,3,4,0,0,0,8,0,9,3,8,4,1,3,

%U 7,2,0,7,4,3,9,6,0,5,5,1,5,3,1,9,8,2,8,8,3,9,1,7,4,3,6,4,2,4,7

%N Decimal expansion of shortest length, (C), of segment from side CA through incenter to side CB in right triangle ABC with sidelengths (a,b,c)=(8,15,17).

%C See A195284 for definitions and a general discussion.

%e (C)=6.99714227381436056504898345305469969182567800...

%t a = 8; b = 15; c = 17;

%t h = a (a + c)/(a + b + c); k = a*b/(a + b + c);

%t f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;

%t s = NSolve[D[f[t], t] == 0, t, 150]

%t f1 = (f[t])^(1/2) /. Part[s, 4]

%t RealDigits[%, 10, 100] (* (A) A195293 *)

%t f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2

%t s = NSolve[D[f[t], t] == 0, t, 150]

%t f3 = (f[t])^(1/2) /. Part[s, 1]

%t RealDigits[%, 10, 100] (* (B) A195296 *)

%t f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2

%t s = NSolve[D[f[t], t] == 0, t, 150]

%t f2 = (f[t])^(1/2) /. Part[s, 4]

%t RealDigits[%, 10, 100] (* (C) A010524 *)

%t (f1 + f2 + f3)/(a + b + c)

%t RealDigits[%, 10, 100] (* Philo(ABC,I), A195297 *)

%Y Cf. A195284.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Sep 14 2011