%I
%S 91,1047,5453,18903,51205,117585,239891,447797,780007,1285459,2024529,
%T 3070235,4509441,6444061,8992263,12289673,16490579,21769135,28320565,
%U 36362367,46135517,57905673,71964379,88630269,108250271,131200811
%N Number of lower triangles of a 3 X 3 integer array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by n or less and triangles differing by a constant counted only once.
%C Row 3 of A195220.
%H R. H. Hardin, <a href="/A195221/b195221.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = (301/30)*n^5 + (301/12)*n^4 + (88/3)*n^3 + (227/12)*n^2 + (199/30)*n + 1.
%F Empirical g.f.: x*(91 + 501*x + 536*x^2 + 70*x^3 + 7*x^4  x^5) / (1  x)^6.  _Colin Barker_, May 06 2018
%F Since a(n) is an Ehrhart polynomial of degree 5 (see A195220), and the empirical polynomial fits the Data for 1 <= n <= 6, it must be correct.  _Robert Israel_, Oct 06 2019
%e Some solutions for n=5:
%e 0 0 0 0 0 0 0 0
%e 3 0 4 4 2 1 5 3 4 2 4 1 1 5 3 3
%e 0 1 2 1 1 4 3 1 2 5 4 0 6 6 5 1 0 4 2 510 8 4 8
%Y Cf. A195220.
%K nonn
%O 1,1
%A _R. H. Hardin_, Sep 13 2011
