login
A195207
Number of even divisors of !n.
7
0, 0, 0, 1, 0, 4, 0, 6, 0, 24, 0, 4, 0, 24, 0, 4, 0, 16, 0, 24, 0, 32, 0, 96, 0, 144, 0, 16, 0, 64, 0, 144, 0, 40, 0, 128, 0, 160, 0, 16, 0, 96, 0, 96, 0, 32, 0, 128, 0, 96, 0, 48, 0, 128, 0, 96, 0, 96, 0, 32, 0
OFFSET
0,6
COMMENTS
!n is a subfactorial number (A000166).
Property of this sequence : for n different of 3, the number of even divisors of !n seems even.
From Robert Israel, Jul 31 2024: (Start)
a(n) = 0 if n is even, a(n) = A000005(A000166(n)/2) if n is odd.
Since n - 1 | A000166(n), a(n) >= A000005((n-1)/2) for odd n. (End)
LINKS
FORMULA
a(n) = A183063(A000166(n)), for n != 1. - Amiram Eldar, Aug 02 2024
EXAMPLE
a(7) = 6 because the divisors of !7 = 1854 are {1, 2, 3, 6, 9, 18, 103, 206, 309, 618, 927, 1854} with 6 even divisors 2, 6, 18, 206, 618, 1854.
MAPLE
A166 := proc(n) option remember; (n-1)*(procname(n-1)+procname(n-2)); end:
A166(0):= 1: A166(1):= 0:
f:= proc(n) if n::even then 0 else numtheory:-tau(A166(n)/2) fi end proc:
map(f, [$0...60]); # Robert Israel, Jul 31 2024
MATHEMATICA
f[n_] := Block[{d = Divisors[Subfactorial[n]]}, Count[EvenQ[d], True]]; Table[f[n], {n, 0, 60}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 13 2011
STATUS
approved