login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195136 a(n) = ((n+1)^(n-1) + (n-1)^(n-1))/2 for n>=1. 3
1, 2, 10, 76, 776, 9966, 154400, 2803256, 58388608, 1372684090, 35958682112, 1038736032324, 32805006411776, 1124535087475814, 41584800431742976, 1650158470945337584, 69943137585151901696, 3153813559835569475058, 150745204037648268787712, 7613458147995669857352380, 405143549343202022103973888, 22657085569540734204315357022, 1328470689420203636727039918080, 81494507575933974604289943213096, 5220210773193749540624447754469376, 348542314841685116176787263033063466, 24216786265392720787141148530274467840, 1748280517106781152846793195054531026356, 130956723831431687431286364126682302906368, 10164786953127554557192799138093559445158870 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
E.g.f.: sinh(x*W(x)) = (W(x) - 1/W(x))/2 where W(x) = LambertW(-x)/(-x) = exp(x*W(x)) = Sum_{n>=0} (n+1)^(n-1)*x^n/n!.
a(n) = Sum_{k=0..floor((n-1)/2)} C(n-1,2*k) * n^(n-2*k-1).
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 76*x^4/4! + 776*x^5/5! + 9966*x^6/6! + 154400*x^7/7! + 2803256*x^8/8! + 58388608*x^9/9! + 1372684090*x^10/10! +...
such that A(x) = sinh(x*W(x))
where W(x) = LambertW(-x)/(-x) begins
W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! +...+ (n+1)^(n-1)*x^n/n! +...
and satisfies W(x) = exp(x*W(x)).
Also, A(x) = (W(x) - 1/W(x))/2 where
1/W(x) = 1 - x - x^2/2! - 4*x^3/3! - 27*x^4/4! - 256*x^5/5! - 3125*x^6/6! - 46656*x^7/7! - 823543*x^8/8! +...+ -(n-1)^(n-1)*x^n/n! +...
MATHEMATICA
Join[{1}, Table[((n+1)^(n-1)+(n-1)^(n-1))/2, {n, 2, 30}]] (* Harvey P. Dale, Feb 06 2023 *)
PROG
(PARI) {a(n)=((n+1)^(n-1) + (n-1)^(n-1))/2}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n)=sum(k=0, (n-1)\2, binomial(n-1, 2*k)*n^(n-2*k-1))}
for(n=1, 30, print1(a(n), ", "))
(PARI) {a(n)=local(W=sum(m=0, n, (m+1)^(m-1)*x^m/m!)+x*O(x^n)); n!*polcoeff(sinh(x*W), n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A355110 A088500 A295929 * A294573 A301741 A375876
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 09 2011
EXTENSIONS
Entry revised by Paul D. Hanna, Jun 19 2016
Corrected and extended by Harvey P. Dale, Feb 06 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 16:05 EDT 2024. Contains 375853 sequences. (Running on oeis4.)