login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195054 a(n) = p(n) - p(n-1) - p(n-2) + p(n-5), where p(n) = A000041(n). 1
1, 0, 0, 0, 0, 0, 0, -1, -1, -2, -3, -5, -6, -10, -13, -18, -24, -33, -42, -57, -72, -94, -120, -154, -192, -245, -305, -382, -473, -588, -721, -891, -1087, -1330, -1617, -1966, -2374, -2874, -3456, -4157, -4979, -5963, -7110, -8481, -10075, -11964, -14168 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,10

COMMENTS

In the introduction of the Andrews-Merca paper appears the inequality: p(n) - p(n-1) - p(n-2) + p(n-5) <= 0, for n > 0. Consider here that the partition number of a negative integer is equal to zero.

The absolute value of a(n) counts the partitions of n in which 2 is the least integer that is not a part and there are more parts >2 than there are 1. [Mircea Merca, Jul 13 2013]

REFERENCES

M. Merca, Fast algorithm for generating ascending compositions, J. Math. Model. Algorithms 11 (2012), 89-104.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10000

G. E. Andrews and M. Merca, The Truncated Pentagonal Number Theorem

G. E. Andrews and M. Merca, The truncated pentagonal number theorem, J. Combin. Theory Ser. A, 119 (2012), 1639-1643.

M. Merca, Fast Algorithm for Generating Ascending Compositions J. Math. Model. Algorithms, March 2012, Volume 11, Issue 1, pp 89-104 (DOI 10.1007/s10852-011-9168-y).

FORMULA

G.f.: (1 - x - x^2 + x^5) / Product_{k>=1} (1-x^k). - Vaclav Kotesovec, Nov 05 2015

a(n) ~ -Pi * exp(Pi*sqrt(2*n/3)) / (6 * sqrt(2) * n^(3/2)). - Vaclav Kotesovec, Nov 05 2015

MAPLE

p:= n-> `if`(n<0, 0, combinat[numbpart](n)):

a:= n-> p(n) -p(n-1) -p(n-2) +p(n-5):

seq(a(n), n=0..50); # Alois P. Heinz, Jan 22 2012

MATHEMATICA

p = PartitionsP; a[n_] := p[n] - p[n-1] - p[n-2] + p[n-5]; Table[a[n], {n, 0, 50}] (* Jean-Fran├žois Alcover, Nov 05 2015 *)

nmax = 50; CoefficientList[Series[(1 - x - x^2 + x^5)/Product[1-x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2015 *)

CROSSREFS

Cf. A000041, A002865.

Sequence in context: A013931 A018429 A035953 * A087750 A288253 A035959

Adjacent sequences:  A195051 A195052 A195053 * A195055 A195056 A195057

KEYWORD

sign,easy

AUTHOR

Omar E. Pol, Jan 14 2012

EXTENSIONS

More terms from Alois P. Heinz, Jan 22 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 10 13:35 EDT 2020. Contains 335576 sequences. (Running on oeis4.)