OFFSET
0,10
COMMENTS
In the introduction of the Andrews-Merca paper appears the inequality: p(n) - p(n-1) - p(n-2) + p(n-5) <= 0, for n > 0. Consider here that the partition number of a negative integer is equal to zero.
The absolute value of a(n) counts the partitions of n in which 2 is the least integer that is not a part and there are more parts >2 than there are 1. [Mircea Merca, Jul 13 2013]
REFERENCES
M. Merca, Fast algorithm for generating ascending compositions, J. Math. Model. Algorithms 11 (2012), 89-104.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
G. E. Andrews and M. Merca, The Truncated Pentagonal Number Theorem
G. E. Andrews and M. Merca, The truncated pentagonal number theorem, J. Combin. Theory Ser. A, 119 (2012), 1639-1643.
M. Merca, Fast Algorithm for Generating Ascending Compositions J. Math. Model. Algorithms, March 2012, Volume 11, Issue 1, pp 89-104 (DOI 10.1007/s10852-011-9168-y).
FORMULA
G.f.: (1 - x - x^2 + x^5) / Product_{k>=1} (1-x^k). - Vaclav Kotesovec, Nov 05 2015
a(n) ~ -Pi * exp(Pi*sqrt(2*n/3)) / (6 * sqrt(2) * n^(3/2)). - Vaclav Kotesovec, Nov 05 2015
MAPLE
p:= n-> `if`(n<0, 0, combinat[numbpart](n)):
a:= n-> p(n) -p(n-1) -p(n-2) +p(n-5):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 22 2012
MATHEMATICA
p = PartitionsP; a[n_] := p[n] - p[n-1] - p[n-2] + p[n-5]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Nov 05 2015 *)
nmax = 50; CoefficientList[Series[(1 - x - x^2 + x^5)/Product[1-x^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 05 2015 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Omar E. Pol, Jan 14 2012
EXTENSIONS
More terms from Alois P. Heinz, Jan 22 2012
STATUS
approved