OFFSET
0,4
FORMULA
EXAMPLE
Triangle T begins:
1;
1, 1;
2, 2, 2;
6, 4, 4, 6;
20, 10, 12, 10, 20;
72, 30, 28, 28, 30, 72;
260, 102, 84, 104, 84, 102, 260;
996, 362, 260, 268, 268, 260, 362, 996;
3772, 1358, 892, 832, 1144, 832, 892, 1358, 3772;
14852, 5130, 3236, 2928, 2956, 2956, 2928, 3236, 5130, 14852;
58204, 19982, 12044, 10072, 9948, 13736, 9948, 10072, 12044, 19982, 58204; ...
...
Matrix product of T and T transpose, T*T~, yields the square array:
1, 1, 2, 6, 20, 72, 260, 996, 3772, ...;
1, 2, 4, 10, 30, 102, 362, 1358, 5130, ...;
2, 4, 12, 28, 84, 260, 892, 3236, 12044, ...;
6, 10, 28, 104, 268, 832, 2928, 10072, 36624, ...;
20, 30, 84, 268, 1144, 2956, 9948, 34700, 130924, ...;
72, 102, 260, 832, 2956, 13736, 36908, 124116, 454820, ...;
260, 362, 892, 2928, 9948, 36908, 180936, 488748, 1693572, ...;
996, 1358, 3236, 10072, 34700, 124116, 488748, 2524968, 6901788, ...;
3772, 5130, 12044, 36624, 130924, 454820, 1693572, 6901788, 36428808, ...;
...
which, when read by antidiagonals, equals this triangle read by rows.
PROG
(PARI) {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, 1))); for(i=1, n, M=matrix(n+1, n+1, r, c, if(r>=c, if(c==1, if(r==1, 1, sum(j=1, r-1, (M*M~)[r-j, j])), (M*M~)[r-c+1, c])))); M[n+1, k+1]}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 05 2011
STATUS
approved