login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194949
Symmetric triangle T, read by rows, where the matrix product of T and T transpose yields a square array which, when read by antidiagonals, equals this triangle read by rows.
2
1, 1, 1, 2, 2, 2, 6, 4, 4, 6, 20, 10, 12, 10, 20, 72, 30, 28, 28, 30, 72, 260, 102, 84, 104, 84, 102, 260, 996, 362, 260, 268, 268, 260, 362, 996, 3772, 1358, 892, 832, 1144, 832, 892, 1358, 3772, 14852, 5130, 3236, 2928, 2956, 2956, 2928, 3236, 5130, 14852, 58204, 19982, 12044, 10072, 9948, 13736, 9948, 10072, 12044, 19982, 58204
OFFSET
0,4
FORMULA
T(n,k) = Sum_{j=0..k} T(n-k,j)*T(k,j) for n>0, k>=0, with T(0,0)=1.
Column 0 (A194950) equals row sums of triangle.
Central terms (A194951) equals sums of squares of terms in rows.
EXAMPLE
Triangle T begins:
1;
1, 1;
2, 2, 2;
6, 4, 4, 6;
20, 10, 12, 10, 20;
72, 30, 28, 28, 30, 72;
260, 102, 84, 104, 84, 102, 260;
996, 362, 260, 268, 268, 260, 362, 996;
3772, 1358, 892, 832, 1144, 832, 892, 1358, 3772;
14852, 5130, 3236, 2928, 2956, 2956, 2928, 3236, 5130, 14852;
58204, 19982, 12044, 10072, 9948, 13736, 9948, 10072, 12044, 19982, 58204; ...
...
Matrix product of T and T transpose, T*T~, yields the square array:
1, 1, 2, 6, 20, 72, 260, 996, 3772, ...;
1, 2, 4, 10, 30, 102, 362, 1358, 5130, ...;
2, 4, 12, 28, 84, 260, 892, 3236, 12044, ...;
6, 10, 28, 104, 268, 832, 2928, 10072, 36624, ...;
20, 30, 84, 268, 1144, 2956, 9948, 34700, 130924, ...;
72, 102, 260, 832, 2956, 13736, 36908, 124116, 454820, ...;
260, 362, 892, 2928, 9948, 36908, 180936, 488748, 1693572, ...;
996, 1358, 3236, 10072, 34700, 124116, 488748, 2524968, 6901788, ...;
3772, 5130, 12044, 36624, 130924, 454820, 1693572, 6901788, 36428808, ...;
...
which, when read by antidiagonals, equals this triangle read by rows.
PROG
(PARI) {T(n, k)=local(M=matrix(n+1, n+1, r, c, if(r>=c, 1))); for(i=1, n, M=matrix(n+1, n+1, r, c, if(r>=c, if(c==1, if(r==1, 1, sum(j=1, r-1, (M*M~)[r-j, j])), (M*M~)[r-c+1, c])))); M[n+1, k+1]}
CROSSREFS
Sequence in context: A209752 A119918 A084867 * A227550 A286384 A379010
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 05 2011
STATUS
approved