Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 30 2012 18:57:44
%S 1,2,1,2,1,3,2,4,1,3,2,4,1,3,5,2,4,6,1,3,5,7,2,4,6,1,3,5,7,2,4,6,1,8,
%T 3,5,7,2,9,4,6,1,8,3,5,7,2,9,4,6,1,8,3,10,5,7,2,9,4,11,6,1,8,3,10,5,
%U 12,7,2,9,4,11,6,1,8,3,10,5,12,7,2,9,4,11,6,1,13,8,3,10,5,12,7,2
%N Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-sqrt(2).
%C See A194832 for a general discussion.
%e First nine rows:
%e 1
%e 2 1
%e 2 1 3
%e 2 4 1 3
%e 2 4 1 3 5
%e 2 4 6 1 3 5
%e 7 2 4 6 1 3 5
%e 7 2 4 6 1 8 3 5
%e 7 2 9 4 6 1 8 3 5
%t r = -Sqrt[2];
%t t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
%t f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194835 *)
%t TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
%t row[n_] := Position[f, n];
%t u = TableForm[Table[row[n], {n, 1, 20}]]
%t g[n_, k_] := Part[row[n], k];
%t p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
%t {k, 1, n}]] (* A194836 *)
%t q[n_] := Position[p, n]; Flatten[Table[q[n],
%t {n, 1, 80}]] (* A194837 *)
%Y Cf. A194832, A194836, A194837.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Sep 03 2011