login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Square array read by antidiagonals: T(n,k) = k*((n+1)*k-n+1)/2, k = 0, +- 1, +- 2,..., n >= 0.
3

%I #55 Aug 24 2024 09:45:32

%S 0,0,1,0,1,0,0,1,1,3,0,1,2,4,1,0,1,3,5,4,6,0,1,4,6,7,9,3,0,1,5,7,10,

%T 12,9,10,0,1,6,8,13,15,15,16,6,0,1,7,9,16,18,21,22,16,15,0,1,8,10,19,

%U 21,27,28,26,25,10,0,1,9,11,22,24,33,34,36,35

%N Square array read by antidiagonals: T(n,k) = k*((n+1)*k-n+1)/2, k = 0, +- 1, +- 2,..., n >= 0.

%C Note that a single formula gives several types of numbers. Row 0 lists 0 together the Molien series for 3-dimensional group [2,k]+ = 22k. Row 1 lists, except first zero, the squares repeated. If n >= 2, row n lists the generalized (n+3)-gonal numbers, for example: row 2 lists the generalized pentagonal numbers A001318. See some other examples in the cross-references section.

%e Array begins:

%e (A008795): 0, 1, 0, 3, 1, 6, 3, 10, 6, 15, 10...

%e (A008794): 0, 1, 1, 4, 4, 9, 9, 16, 16, 25, 25...

%e A001318: 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40...

%e A000217: 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55...

%e A085787: 0, 1, 4, 7, 13, 18, 27, 34, 46, 55, 70...

%e A001082: 0, 1, 5, 8, 16, 21, 33, 40, 56, 65, 85...

%e A118277: 0, 1, 6, 9, 19, 24, 39, 46, 66, 75, 100...

%e A074377: 0, 1, 7, 10, 22, 27, 45, 52, 76, 85, 115...

%e A195160: 0, 1, 8, 11, 25, 30, 51, 58, 86, 95, 130...

%e A195162: 0, 1, 9, 12, 28, 33, 57, 64, 96, 105, 145...

%e A195313: 0, 1, 10, 13, 31, 36, 63, 70, 106, 115, 160...

%e A195818: 0, 1, 11, 14, 34, 39, 69, 76, 116, 125, 175...

%o (GW-BASIC)

%o 100 'SQUARE ARRAY T(N,K) A194801

%o 200 DIM T(11,10)

%o 210 FOR N=0 TO 11

%o 220 FOR J=0 TO 5

%o 230 IF J>0 THEN T(N,K)= J *((N+1)* J -N+1)/2: K=K+1

%o 240 T(N,K)=(-J)*((N+1)*(-J)-N+1)/2: K=K+1

%o 250 NEXT J

%o 260 K=0

%o 270 NEXT N

%o 299 '...

%o 300 'PRINT SQUARE ARRAY T(N,K) (see example)

%o 310 FOR N=0 TO 11

%o 320 FOR K=0 TO 10

%o 330 PRINT T(N,K);

%o 340 NEXT K

%o 350 PRINT

%o 360 NEXT N

%o 500 END

%Y Rows (0-11): 0 together with A008795, (truncated A008794), A001318, A000217, A085787, A001082, A118277, A074377, A195160, A195162, A195313, A195818

%Y Columns (0-9): A000004, A000012, A001477, (truncated A000027), A016777, (truncated A008585), A016945, (truncated A016957), A017341, (truncated A017329).

%Y Cf. A139600.

%K nonn,tabl

%O 0,10

%A _Omar E. Pol_, Feb 05 2012