login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 3 nonattacking kings on an n X n cylindrical chessboard.
3

%I #14 Aug 05 2024 10:25:04

%S 0,0,0,88,785,3528,11151,28560,63513,127520,236863,413736,687505,

%T 1096088,1687455,2521248,3670521,5223600,7286063,9982840,13460433,

%U 17889256,23466095,30416688,38998425,49503168,62260191,77639240,96053713,117963960,143880703

%N Number of ways to place 3 nonattacking kings on an n X n cylindrical chessboard.

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Number of ways of placing non-attacking queens, kings, bishops and knights</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7, -21, 35, -35, 21, -7, 1).

%F a(n) = 1/6*n*(n^5 - 27*n^3 + 18*n^2 + 194*n - 228), n>=4.

%F G.f.: -x^4*(15*x^6 - 89*x^5 + 196*x^4 - 140*x^3 - 119*x^2 + 169*x + 88)/(x-1)^7.

%t CoefficientList[Series[-x^3*(15*x^6 - 89*x^5 + 196*x^4 - 140*x^3 - 119*x^2 + 169*x + 88)/(x - 1)^7, {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Dec 27 2023 *)

%Y Cf. A061996, A179404, A194650.

%K nonn

%O 1,4

%A _Vaclav Kotesovec_, Aug 31 2011