login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest image size for which the number of endofunctions (functions f:{1,2,...,n}->{1,2,...,n}) is a maximum.
1

%I #23 Nov 14 2014 10:27:32

%S 0,1,1,2,3,3,4,5,5,6,7,7,8,8,9,10,10,11,12,12,13,13,14,15,15,16,17,17,

%T 18,19,19,20,20,21,22,22,23,24,24,25,25,26,27,27,28,29,29,30,31,31,32,

%U 32,33,34,34,35,36,36,37,38,38,39,39,40,41,41,42,43,43

%N Smallest image size for which the number of endofunctions (functions f:{1,2,...,n}->{1,2,...,n}) is a maximum.

%C a(n) is the smallest number of elements in the image for which the number of functions f:{1,2,...,n}->{1,2,...,n} is a maximum.

%H Alois P. Heinz, <a href="/A194640/b194640.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = arg max_{k=0..n} Stirling2(n,k) * k! * C(n,k) for n!=2, a(2) = 1.

%F a(n) = arg max_{k=0..n} A090657(n,k) for n!=2, a(2) = 1.

%e a(3) = 2 because there are 18 functions from {1,2,3} into {1,2,3} that have two elements in their image, 3 functions have one and 6 functions that have three elements in their image.

%p T:= proc(n, k) option remember;

%p if k=n then n!

%p elif k=0 or k>n then 0

%p else n * (T(n-1, k-1) + k/(n-k) * T(n-1, k))

%p fi

%p end:

%p a:= proc(n) local i, k, m, t;

%p m, i:= 0, 0;

%p for k to n do

%p t:= T(n, k);

%p if t>m then m, i:= t, k fi

%p od; i

%p end:

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Sep 08 2011

%t Prepend[Flatten[Table[Flatten[First[Position[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 1, n}],Max[Table[StirlingS2[n, k] Binomial[n, k] k!, {k, 1, n}]]]]], {n, 1,50}]], 0]

%Y Cf. A000312 (number of endofunctions), A090657.

%K nonn

%O 0,4

%A _Geoffrey Critzer_, Aug 31 2011