login
A194466
Numbers m such that Sum_{k=1..m} (<c + k*r> - <k*r>) > 0, where r=sqrt(2) and c=sqrt(1/2), and < > denotes fractional part.
1
3, 5, 6, 10, 17, 20, 22, 23, 27, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 44, 46, 47, 51, 58, 61, 63, 64, 68, 75, 92, 99, 102, 104, 105, 109, 116, 119, 121, 122, 126, 128, 129, 131, 132, 133, 134, 135, 136, 138, 139, 143, 145, 146, 150, 157, 160, 162, 163
OFFSET
1,1
COMMENTS
See A194368.
MATHEMATICA
r = Sqrt[2]; c = 1/r;
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t1, 1]] (* A184465 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t3, 1]] (* A184466 *)
CROSSREFS
Cf. A194368.
Sequence in context: A238488 A230124 A027627 * A270416 A290269 A115059
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 24 2011
STATUS
approved