login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of basic ideals in the standard Borel subalgebra of the untwisted affine Lie algebra sl_n.
4

%I #61 Sep 08 2022 08:45:58

%S 1,4,18,82,370,1648,7252,31582,136338,584248,2488156,10540484,

%T 44450068,186715072,781628008,3262239862,13579324498,56391614632,

%U 233686316428,966556003132,3990942300508,16453094542432,67733512006168

%N a(n) is the number of basic ideals in the standard Borel subalgebra of the untwisted affine Lie algebra sl_n.

%C a(n) also equals the number of pairs (p,q) of Dyck paths of semilength n, such that the first peak of q has height at least n-l(p), where l(p) is the height of the last peak of p, and the last peak of q has height at least n-f(p), where f(p) is the height of the first peak of p.

%C From _Per Alexandersson_, May 26 2018: (Start)

%C a(n) is also equal to the number of circular arc digraphs on n vertices.

%C a(n) is equal to the number of lists b(1),b(2),...,b(n) such that 0 <= b(i) < n and b(i)-1 <= b(i+1) for i=1..n-1 and b(n)-1 <= b(1).

%C The subset of such sequences such that b(n)=0 is given by the Catalan numbers, A000108. (End)

%C Christian Krattenthaler has shown that a(n) = (n+2)*binomial(2*n-1,n-1) - 2^(2*n-1), which also implies the above recursion observed by _D. S. McNeil_. - _Volodymyr Mazorchuk_, Aug 26 2011

%H G. C. Greubel, <a href="/A194460/b194460.txt">Table of n, a(n) for n = 1..1000</a>

%H Per Alexandersson, Svante Linusson, Samu Potka, <a href="https://arxiv.org/abs/1903.01327">The cyclic sieving phenomenon on circular Dyck paths</a>, arXiv:1903.01327 [math.CO], 2019.

%H Per Alexandersson and Greta Panova, <a href="https://arxiv.org/abs/1705.10353">LLT polynomials, chromatic quasisymmetric functions and graphs with cycles</a>, arXiv:1705.10353 [math.CO], 2017. See Lemma 5.

%H K. Baur and V. Mazorchuk; <a href="http://arxiv.org/abs/1108.3659">Combinatorial analogues of ad-nilpotent ideals for untwisted affine Lie algebras</a>, arXiv:1108.3659 [math.RA], 2011.

%F It appears that the sequence is given by a(1)=1, a(n) = 4*a(n-1) + 2*binomial(2*n-3, n-3). - _D. S. McNeil_, Aug 25 2011

%F 0 = a(n)*(+2304*a(n+1) -3744*a(n+2) +1464*a(n+3) -168*a(n+4)) +a(n+1)*(-96*a(n+1) +1192*a(n+2) -730*a(n+3) +102*a(n+4)) +a(n+2)*(-78*a(n+2) +99*a(n+3) -19*a(n+4)) +a(n+3)*(-3*a(n+3) +a(n+4)) for all n>0. - _Michael Somos_, Jun 28 2018

%e G.f. = x + 4*x^2 + 18*x^3 + 82*x^4 + 370*x^5 + 1648*x^6 + 7252*x^7 + 31582*x^8 + ... - _Michael Somos_, Jun 28 2018

%t a[n_] := (n+2) Binomial[2n-1, n-1] - 2^(2n-1);

%t Array[a, 23] (* _Jean-François Alcover_, Jul 27 2018, after _Michael Somos_ *)

%o (Sage)

%o def A194460(n):

%o if n == 1: return 1

%o cf = CachedFunction(lambda i,j,n: binomial(n-1-i+n-1-j,n-i-1)-binomial(n-1-i+n-1-j, n-i-j-1))

%o CP = cartesian_product

%o return sum(sum(cf(i,j,n)*cf(k,m,n) for k,m in CP([[n-i..n],[n-j..n]])) for i,j in CP([[1..n],[1..n]]))

%o # _D. S. McNeil_, Aug 25 2011

%o (PARI) {a(n) = if( n<1, 0, (n+2) * binomial(2*n-1, n-1) - 2^(2*n-1))}; /* _Michael Somos_, Jun 28 2018 */

%o (Magma) [(n+2)*Binomial(2*n-1, n-1) - 2^(2*n-1): n in [1..30]]; // _G. C. Greubel_, Aug 13 2018

%K nonn

%O 1,2

%A _Volodymyr Mazorchuk_, Aug 24 2011

%E More terms from _D. S. McNeil_, Aug 25 2011