Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Aug 16 2024 16:42:04
%S 1,3,6,10,15,17,21,27,35,45,48,54,63,75,90,94,102,114,130,150,155,165,
%T 180,200,225,227,231,237,245,255,259,267,279,295,315,321,333,351,375,
%U 405,413,429,453,485,525,535,555,585,625,675,678,684,693,705,720,726
%N Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 5.
%C The number of zeros in the first n rows is binomial(n+1,2) - a(n).
%H Alois P. Heinz, <a href="/A194458/b194458.txt">Table of n, a(n) for n = 0..10000</a>
%H Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2210.10968">Identities and periodic oscillations of divide-and-conquer recurrences splitting at half</a>, arXiv:2210.10968 [cs.DS], 2022, p. 53.
%H Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, <a href="https://arxiv.org/abs/2408.06817">Periodic minimum in the count of binomial coefficients not divisible by a prime</a>, arXiv:2408.06817 [math.NT], 2024. See p. 1.
%F a(n) = ((C(d0+1,2)*15^0*(d1+1) + C(d1+1,2)*15^1)*(d1+1) + C(d1+1,2)*15^1)*(d2+1) + C(d2+1,2)*15^2 ..., where d_k...d_1d_0 is the base 5 expansion of n+1 and 15 = binomial(5+1,2). The formula generalizes to other prime bases p.
%e n = 38: n+1 = 39 = 124_5, thus a(38) = (C(5,2)*15^0*3 + C(3,2)*15^1)*2 + C(2,2)*15^2 = (10*1*3 + 3*15)*2 + 1*225 = 375.
%p a:= proc(n) local l, m, h, j;
%p m:= n+1;
%p l:= [];
%p while m>0 do l:= [l[], irem (m, 5, 'm')+1] od;
%p h:= 0;
%p for j to nops(l) do h:= h*l[j] +binomial (l[j], 2) *15^(j-1) od:
%p h
%p end:
%p seq (a(n), n=0..100);
%t a[n_] := Module[{l, m, r, h, j}, m = n+1; l = {}; While[m>0, l = Append[l, {m, r} = QuotientRemainder[m, 5]; r+1]]; h = 0; For[j = 1, j <= Length[l], j++, h = h*l[[j]] + Binomial [l[[j]], 2] *15^(j-1)]; h]; Table [a[n], {n, 0, 100}] (* _Jean-François Alcover_, Feb 26 2017, translated from Maple *)
%Y A006046(n+1) = A006046(n) + A001316(n) for p=2.
%Y A006048(n+1) = A006048(n) + A006047(n+1) for p=3.
%Y a(n+1) = a(n) + A194459(n+1) for p=5.
%K nonn
%O 0,2
%A _Paul Weisenhorn_, Aug 24 2011
%E Edited by _Alois P. Heinz_, Sep 06 2011