login
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) > 0, where r=sqrt(12) and < > denotes fractional part.
3

%I #11 Feb 15 2021 02:21:15

%S 1,3,5,7,9,11,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,31,33,

%T 35,37,39,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,59,61,63,65,

%U 67,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,85,87,89,91,93

%N Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) > 0, where r=sqrt(12) and < > denotes fractional part.

%C See A194368.

%t r = Sqrt[12]; c = 1/2;

%t x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]

%t y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]

%t t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 400}];

%t Flatten[Position[t1, 1]] (* empty *)

%t t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 300}];

%t Flatten[Position[t2, 1]] (* A194390 *)

%t t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];

%t Flatten[Position[t3, 1]] (* A194391 *)

%Y Cf. A010469, A194368, A194390.

%K nonn

%O 1,2

%A _Clark Kimberling_, Aug 23 2011