login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) = 0, where r=sqrt(10) and < > denotes fractional part.
3

%I #10 Feb 15 2021 02:20:44

%S 6,12,18,24,30,36,228,234,240,246,252,258,264,456,462,468,474,480,486,

%T 492,684,690,696,702,708,714,720

%N Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) = 0, where r=sqrt(10) and < > denotes fractional part.

%C See A194368.

%t r = Sqrt[10]; c = 1/2;

%t x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]

%t y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]

%t t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 300}];

%t Flatten[Position[t1, 1]] (* empty *)

%t t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 800}];

%t Flatten[Position[t2, 1]] (* A194385 *)

%t t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 100}];

%t Flatten[Position[t3, 1]] (* A194386 *)

%Y Cf. A010467, A194368, A194386.

%K nonn

%O 1,1

%A _Clark Kimberling_, Aug 23 2011