login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=3-sqrt(5).
2

%I #5 Mar 30 2012 18:57:43

%S 1,0,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,2,2,0,1,0,2,1,1,2,0,2,0,2,0,2,0,

%T 2,0,1,1,1,1,1,1,1,2,0,1,1,1,1,0,2,1,1,2,0,1,1,0,2,1,1,1,1,1,2,0,1,1,

%U 1,1,2,0,1,2,0,2,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,2,1,0,1

%N Triangular array: g(n,k)=number of fractional parts (i*r) in interval [(k-1)/n, k/n], for 1<=i<=n, 1<=k<=n, r=3-sqrt(5).

%C See A194285.

%e First nine rows:

%e 1

%e 0..2

%e 1..1..1

%e 1..1..1..1

%e 1..1..1..1..1

%e 1..1..0..2..2..0

%e 1..0..2..1..1..2..0

%e 2..0..2..0..2..0..2..0

%e 1..1..1..1..1..1..1..2..0

%t r = 3-Sqrt[5];

%t f[n_, k_, i_] := If[(k - 1)/n <= FractionalPart[i*r] < k/n, 1, 0]

%t g[n_, k_] := Sum[f[n, k, i], {i, 1, n}]

%t TableForm[Table[g[n, k], {n, 1, 14}, {k, 1, n}]]

%t Flatten[%] (* A194337 *)

%Y Cf. A194285.

%K nonn,tabl

%O 1,3

%A _Clark Kimberling_, Aug 22 2011