login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest prime that divides the n-th partition number p(n) but does not divide p(1)*p(2)*...*p(n-1), or 1 if none.
4

%I #21 May 30 2015 22:09:56

%S 1,2,3,5,7,11,1,1,1,1,1,1,101,1,1,1,1,1,1,19,1,167,251,1,89,29,43,13,

%T 83,467,311,23,1,1231,41,17977,281,1,1,127,193,2417,71,97,1087,241,67,

%U 7013,631,9283,661,53,5237,59,227,1019,102359,3251,199,409,971

%N Largest prime that divides the n-th partition number p(n) but does not divide p(1)*p(2)*...*p(n-1), or 1 if none.

%C It appears that a(n) is prime for all n > 97. See A194259 and A194260 for additional comments and links.

%H Alois P. Heinz and Giovanni Resta, <a href="/A194262/b194262.txt">Table of n, a(n) for n = 1..10000</a> (first 2000 terms from Alois P. Heinz)

%p with(combinat): with(numtheory):

%p b:= proc(n) option remember;

%p `if`(n=1, {}, b(n-1) union factorset(numbpart(n)))

%p end:

%p a:= n-> `if`(n=1, 1, max(1, (b(n) minus b(n-1))[])):

%p seq(a(n), n=1..120); # _Alois P. Heinz_, Aug 21 2011

%t a[n_] := Complement[FactorInteger[PartitionsP[n]][[All, 1]], FactorInteger[Product[PartitionsP[k], {k, 1, n-1}]][[All, 1]]] /. {} -> {1} // Last; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Jan 28 2014 *)

%Y Cf. A000041, A071963, A194259, A194260, A194261.

%K nonn,look

%O 1,2

%A _Jonathan Sondow_, Aug 21 2011