%I #13 Dec 12 2024 11:14:21
%S 0,1,1,2,2,3,3,3,4,4,5,6,6,6,7,7,7,8,9,9,9,10,11,11,12,13,13,13,14,15,
%T 15,16,16,17,17,18,18,19,19,19,20,20,21,22,22,22,23,23,23,24,25,25,25,
%U 26,27,27,28,28,29,29,30,30,31,32,32,33,33,34,34,34,35,36,37
%N [sum{(k*e) : 1<=k<=n}], where [ ]=floor, ( )=fractional part.
%C The defining [sum] is equivalent to
%C ...
%C a(n)=[n(n+1)r/2]-sum{[k*r] : 1<=k<=n},
%C ...
%C where []=floor and r=sqrt(2). Let s(n) denote the n-th partial sum of the sequence a; then the difference sequence d defined by d(n)=s(n+1)-s(n) gives the runlengths of a.
%C ...
%C Examples:
%C ...
%C r...........a........s....
%C 1/2......A002265...A001972
%C 1/3......A002264...A001840
%C 2/3......A002264...A001840
%C 1/4......A194220...A194221
%C 1/5......A194222...A118015
%C 2/5......A057354...A011858
%C 3/5......A194222...A118015
%C 4/5......A057354...A011858
%C 1/6......A194223...A194224
%C 3/7......A057357...A194229
%C 1/8......A194235...A194236
%C 3/8......A194237...A194238
%C sqrt(2)..A194161...A194162
%C sqrt(3)..A194163...A194164
%C sqrt(5)..A194169...A194170
%C sqrt(6)..A194173...A194174
%C tau......A194165...A194166; tau=(1+sqrt(5))/2
%C e........A194200...A194201
%C 2e.......A194202...A194203
%C e/2......A194204...A194205
%C pi.......A194206...A194207
%H G. C. Greubel, <a href="/A194200/b194200.txt">Table of n, a(n) for n = 1..5000</a>
%e a(5)=[(e)+(2e)+(3e)+4(e)+5(e)]
%e =[.718+.436+.154+.873+.591]
%e =[2.77423]=2.
%t r = E;
%t a[n_] := Floor[Sum[FractionalPart[k*r], {k, 1, n}]]
%t Table[a[n], {n, 1, 90}] (* A194200 *)
%t s[n_] := Sum[a[k], {k, 1, n}]
%t Table[s[n], {n, 1, 100}] (* A194201 *)
%Y Cf. A194201.
%K nonn
%O 1,4
%A _Clark Kimberling_, Aug 19 2011