|
|
A194185
|
|
Primes of the form k^16 + (k+1)^16.
|
|
14
|
|
|
65537, 4338014017, 2973697798081, 36054040477057, 314707907280257, 8746361693522261761, 4441930186581050471617, 1936348941361814438534657, 8260002645666200230661441, 157512780598351804823277697, 684655198104511486296198721, 21770695412796292350304592257
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Prime 16-dimensional centered cube numbers. This is to dimension 16 as A194155 is to dimension 8 and as A152913 is to dimension 4.
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 1..3000
|
|
EXAMPLE
|
a(1) = 1^16 + (1+1)^16 = 65537 = A100266(2).
a(2) = 3^16 + (3+1)^16 = 4338014017 = A100266(3).
a(3) = 5^16 + (5+1)^16 = 2973697798081 = A100266(4).
a(4) = 6^16 + (6+1)^16 = 36054040477057 = A100266(5).
a(5) = 7^16 + (7+1)^16 = 314707907280257 = A100266(6).
a(6) = 14^16 + (14+1)^16 = 8746361693522261761 = A100266(11).
a(7) = 21^16 + (21+1)^16 = 4441930186581050471617 = A100266(22).
|
|
MATHEMATICA
|
Select[Table[n^16+(n+1)^16, {n, 0, 800}], PrimeQ] (* Vincenzo Librandi, Dec 07 2011 *)
Select[Total/@Partition[Range[60]^16, 2, 1], PrimeQ] (* Harvey P. Dale, Dec 07 2017 *)
|
|
PROG
|
(Magma) [ a: n in [1..100] | IsPrime(a) where a is n^16+(n+1)^16 ]; // Vincenzo Librandi, Dec 07 2011
|
|
CROSSREFS
|
Cf. A000040, A154535, A100266, A152913, A194155.
Sequence in context: A013964 A036094 A133865 * A282777 A096555 A258533
Adjacent sequences: A194182 A194183 A194184 * A194186 A194187 A194188
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jonathan Vos Post, Aug 18 2011
|
|
STATUS
|
approved
|
|
|
|