Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 08 2022 08:45:58
%S 2,6,13,22,34,48,64,83,104,128,154,182,213,246,282,320,361,404,449,
%T 497,547,600,655,712,772,834,899,966,1036,1108,1182,1259,1338,1420,
%U 1504,1590,1679,1770,1864,1960,2058,2159,2262,2368,2476,2587,2700,2815
%N a(n) = Sum_{j=1..n} floor(j*(1+sqrt(2))), n-th partial sum of Beatty sequence for 1+sqrt(2).
%H G. C. Greubel, <a href="/A194138/b194138.txt">Table of n, a(n) for n = 1..5000</a>
%t c[n_] := Sum[Floor[j*(1+Sqrt[2])], {j, 1, n}];
%t c = Table[c[n], {n, 1, 90}]
%o (PARI) for(n=1,60, print1(sum(j=1,n, floor(j*(1+sqrt(2)))), ", ")) \\ _G. C. Greubel_, Oct 05 2018
%o (Magma) [(&+[Floor(k*(1+Sqrt(2))): k in [1..n]]): n in [1..60]] // _G. C. Greubel_, Oct 05 2018
%Y Cf. A003151 (Beatty sequence for 1+sqrt(2)).
%K nonn
%O 1,1
%A _Clark Kimberling_, Aug 17 2011