login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangular array: T(n,k)=C(n+2,k)+C(n+2,k+1)+C(n+2,k+2), 0<=k<=n.
2

%I #5 Mar 30 2012 18:57:40

%S 4,7,7,11,14,11,16,25,25,16,22,41,50,41,22,29,63,91,91,63,29,37,92,

%T 154,182,154,92,37,46,129,246,336,336,246,129,46,56,175,375,582,672,

%U 582,375,175,56,67,231,550,957,1254,1254,957,550,231,67,79,298,781

%N Triangular array: T(n,k)=C(n+2,k)+C(n+2,k+1)+C(n+2,k+2), 0<=k<=n.

%F T(n,k)=C(n+2,k)+C(n+2,k+1)+C(n+2,k+2), 0<=k<=n.

%e Northwest corner:

%e 4

%e 7....7

%e 11...14...11

%e 16...25...25...16

%e 22...41...50...41...22

%e 29...63...91...91...63..29

%t T[n_, k_] := Binomial[n + 2, k] + Binomial[n + 2, k + 1] + Binomial[n + 2, k + 2]

%t Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]]

%t (* A194121 as a sequence *)

%t TableForm[Table[T[n, k], {n, 0, 10}, {k, 0, n}]]

%t (* A194121 as an array *)

%Y Cf. A194119, A194121.

%K nonn,tabl

%O 0,1

%A _Clark Kimberling_, Aug 16 2011