login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194045
Numbers whose binary expansion is a preorder traversal of a binary tree
0
0, 4, 20, 24, 84, 88, 100, 104, 112, 340, 344, 356, 360, 368, 404, 408, 420, 424, 432, 452, 456, 464, 480, 1364, 1368, 1380, 1384, 1392, 1428, 1432, 1444, 1448, 1456, 1476, 1480, 1488, 1504, 1620, 1624, 1636, 1640, 1648, 1684, 1688, 1700, 1704, 1712, 1732, 1736, 1744, 1760, 1812, 1816, 1828, 1832, 1840, 1860, 1864, 1872, 1888, 1924, 1928, 1936, 1952, 1984
OFFSET
0,2
COMMENTS
When traversing the tree in preorder, emit 1 at each node and 0 if it has no child on the current branch. The smallest binary tree is empty, so we emit 0 at the root; thus a(0) = 0. The next binary tree is a single node (emit 1) with no left (emit 0) or right child (emit 0); thus a(1) = 100 in binary or 4.
FORMULA
a(n) = 4 * A057520(n). [Joerg Arndt, Sep 22 2012]
a(0)=0, a(n) = 2 * A014486(n) for n>=1. [Joerg Arndt, Sep 22 2012]
PROG
(JavaScript)
// n is the number of internal nodes (or 1s in the binary expansion)
// f is a function to display each result
function trees(n, f) {
// h is the "height", thinking of 1 as a step up and 0 as a step down
// s is the current state
function enumerate(n, h, s, f) {
if (n===0 && h===0) { f(2 * s); }
else {
if (h > 0) { enumerate(n, h - 1, 2 * s, f) }
if (n > 0) { enumerate(n - 1, h + 1, 2 * s + 1, f) }
}
}
enumerate(n, 0, 0, f);
}
CROSSREFS
Cf. A000108.
Sequence in context: A298040 A174134 A032425 * A097251 A202070 A198831
KEYWORD
nonn
AUTHOR
Mike Stay, Aug 13 2011
STATUS
approved